If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-80x+88=0
a = 3; b = -80; c = +88;
Δ = b2-4ac
Δ = -802-4·3·88
Δ = 5344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5344}=\sqrt{16*334}=\sqrt{16}*\sqrt{334}=4\sqrt{334}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-4\sqrt{334}}{2*3}=\frac{80-4\sqrt{334}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+4\sqrt{334}}{2*3}=\frac{80+4\sqrt{334}}{6} $
| -8r-6=194 | | -6+t=-6−5t | | -6n+10−6n=-8−10n | | 8d-8=320 | | -3w+4=-4w+9 | | 3x^2-80x+880=0 | | 0.9x+2.1=0.3x-1.5 | | (3x-15)+(x+5)+(x+20)=180 | | -2f=8+2f | | -7b+3=185 | | 6b-78=2b/3+2 | | -8-3y=-6y+10 | | 5n+7=-83 | | -8m+7=-2m+1 | | 4=7+b | | 2d-5/3=5 | | -t+9=8t | | 3x-6=7x+1.5 | | 4x+35=5(7-6x) | | 4x+12=6x+20 | | -5.5x+0.48=-3.92 | | 7−9u=-1−10u | | 6(4-j)=2j | | -5x^2+20x=-230 | | c^2=14^2 | | 29+8m=-5(-2m+4)+5m | | 8=h+3 | | -10+8j=8+10j | | 5(2c=7)=80 | | x^2+12x-18=4x^2+12x-9 | | 0.90x20= | | -65.736=7.6(9c+1) |